Abstract Diazotrophs are a diverse group of microorganisms that can fertilize the ocean through biological nitrogen fixation (BNF). Due to the high energetic cost of this process, diazotrophy in nitrogen-replete regions remains enigmatic. We use multidisciplinary observations to propose a novel framework for the ecological niche construction of nitrogen fixers in the upwelling region off NW Iberia — one of the most productive coastal regions in Europe — characterized by weak, and intermittent wind-driven upwelling and the presence of bays. The main diazotroph detected (UCYN-A2) was more abundant and active during summer and early autumn, coinciding with relatively high temperatures (>16°C), low nitrogen:phosphorus ratios (N:P < 7.2), and a large contribution of ammonium (>75%) to the total dissolved inorganic nitrogen available. Furthermore, nutrient amendment experiments showed that BNF is detectable when phytoplankton biomass and productivity are nitrogen limited. Seasonally recurrent biogeochemical processes driven by hydrography create an ecological niche for nitrogen fixers in this system. During the spring–summer upwelling, non-diazotroph autotrophs consume nitrate and produce organic matter inside the bays. Thereafter, the combined effect of intense remineralization on the shelf and sustained positive circulation within the bays in late summer-early autumn, conveys enhanced ammonium content and excess phosphate into the warm surface layer. The low N:P ratio confers a competitive advantage to diazotrophs since they are not restricted by nitrogen supply. The new nitrogen supply mediated by BNF could extend the productivity period and may be key reason why upwelling bays are more productive than upwelled offshore waters.
Read full abstract