Abstract

Excess phosphorus abundance often drives eutrophication and affects surface water quality. Formation of vivianite (Fe3(PO4)2 • 8H2O) in aquatic sediments acts as a significant sink for phosphate (P), crucial for resorting surface waters. Authigenic vivianite formation, however, can be limited by other ferrous iron containing phases, in particular iron sulfides. Although thermodynamically feasible under suitable conditions, the formation of vivianite from mackinawite has been widely disregarded for authigenic phosphate mineral formation. Here we investigated the formation of vivianite from mackinawite (FeS) in batch experiments in which dissolved sulfide was continuously removed, at P levels between 0 – 5 mM in a pH of 6 to 8. Solid characterizations by electron microscopy, X-ray diffraction as well as Mössbauer and X-ray absorption spectroscopy demonstrates that vivianite was formed at all pH values in P amended experiments. The temporal evolution of dissolved Fe(II) concentrations indicates that the transformation proceeds via the release of the dissolved Fe(II) by FeS dissolution and subsequent vivianite precipitation, over time scales of days. The kinetics of the transformation are controlled by the dissolution rates of FeS. Aging and transformation of FeS, however, compete with vivianite formation. Aging is more pronounced at higher pH but is inhibited by P adsorption. Hence, the effect of pH and P concentration on aging is the main reason for the influence on these parameters on the rates and extent of vivianite formation. Our findings demonstrate that FeS can be an effective iron source for vivianite formation in aquatic sediments when sulfide concentrations decrease due to, for example, changes in external forcing or microbial sulfide oxidation. Formation of vivianite from FeS as an Fe source can also open new perspectives in P recovery in water treatment, for example when Fe is added to digesters to bind H2S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.