Time-resolved fluorescence spectroscopy (TRFS) was applied to an aluminate glass sample doped with Eu3+ cation as a fluorescent probe of the chemical environment and local symmetry. Conventional far-field experiments revealed the presence of two different phases: an amorphous phase featured by a highly disordered environment surrounding the Eu3+ cation and a more ordered polycrystalline phase that exhibits a significant increase in the Eu3+ fluorescence decay time compared to that of the amorphous phase. Near-field fluorescence spectra and decay kinetics were recorded in the frontier region between the two phases using a home-built scanning near-field optical microscope. SNOM-TRFS experiments confirmed the presence of local heterogeneities in this part of the glass at a sub-micrometric spatial scale. Polycrystalline sites featured an important shear-force interaction with the probing fiber optic tip, a longer fluorescence decay time, and a higher Stark splitting of the 5D0 --> 7FJ (J = 1-4) electronic transitions of the Eu3+ cations.
Read full abstract