Abstract

Acoustic emission (AE) characteristics have been studied for single-edge-notched monolithic thin aluminum (Al) plates and glass fiber/Al hybrid laminates. Traveling microscope was used for observing the plastic deformation and damage zone around the initial notch tip. Frequency characteristics of AE signals processed by fast Fourier transform (FFT) from monolithic Al could be classified into two different types. Type I signal had a relatively low frequency band of 96~260kHz, while Type II signal had broad band frequencies of 192~408kHz. In case of glass fiber/Al hybrid laminates, AE signals with high amplitude (>80dB) and long duration (>2msec) were additionally confirmed on FFT frequency analysis, which corresponded to macro-crack propagation and/or delamination between aluminum layer and glass fiber layer. Also, distributions of the first and the second peaks in frequency spectrum were related with local fracture behaviors of the hybrid laminates. AE source location determined by signal arrival time showed the extent of fracture zones. On the basis of the above AE analysis, characteristic features of fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber orientations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.