The reaction process, mechanism, and kinetics of the desulfurization of high-sulfur bauxite during calcination were investigated using thermal analysis–infrared analysis. A conveyor-bed calcination system was used to study the variations in the physical phase, desulfurization rate, and alumina dissipation rate of high-sulfur bauxite in the range of 500 °C–650 °C. The results show that sclerite monohydrate, kaolinite, rhodochrosite, pyrite, and dolomite mainly decompose during the calcination of high-sulfur bauxite, generating H2O(g), CO2, and SO2 as gaseous products. The decomposition of sclerite monohydrate and kaolinite and the dehydroxylation reactions of rhodochrosite and pyrite occur at <650 °C, with inseparable temperature overlap. High-sulfur bauxite desulfurization follows a three-dimensional spherical diffusion mechanism, with an activation energy of 181.16 kJ/mol, controlled by the diffusion rate of O2 or SO2 through the solid product layer. High-sulfur bauxite was calcined at 600 °C–650 °C for around 3.5 s in a conveyor bed, resulting in a negative divalent sulfur content of <0.03 wt.%, desulfurization rate of >0.98, and relative dissolution rate of alumina of >99%, satisfying the requirements of aluminum extraction via the Bayer method. The desulfurization rate predictions of the kinetic model were consistent with the experimental data.