Abstract
The aim of this study was kinetic investigations of aluminum extraction from Ethiopian kaolinite with hydrochloric acid. The effects of extraction parameters, namely, solid-to-liquid ratio (0.05, 0.075, 0.100, and 0.125 g·mL−1), acid concentrations (2, 3, 4, and 5 M), reaction temperature (50, 60, 70, and 80°C), and time (20, 40, 60, 80, 100, 120, 140, 160, and 180 min), on yield of aluminum were investigated. The results revealed that the extraction yield of aluminum increased with increase of acid concentration, reaction temperature, and time and declined with increase of solid-to-liquid ratio. The kinetic analysis of aluminum extraction was evaluated using pseudohomogeneous, nucleation growth (Avrami), and shrinking core models. The results showed that kinetics of aluminum extraction were controlled by surface chemical reaction. The experimental results were well fitted by the shrinking core model of surface chemical reaction with first-order rate. The activation energy and the preexponential factor were 25.40 kJ·mol−1 and 0.949 cm·min−1, respectively. The leached solution samples were crystallized using evaporation and concentrated hydrochloric acid pouring. The volume ratios of concentrated hydrochloric acid to the samples were from 0.30 to 0.90 (v/v). The crystallization efficiency of aluminum chloride hexahydrate crystals increased with volume of hydrochloric acid and crystallization time. The crystallization yield of aluminum chloride hexahydrate crystals reached 90%. This study’s results clearly revealed that Ethiopian kaolinite could be a promising raw material to produce aluminum chloride hexahydrate, which could be used for water treatment application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.