Abstract

A novel sinter method using ZnO as the activator instead of the conventional Na2CO3/CaCO3, (NH4)2SO4, and K2S2O7 was developed to achieve efficient sequential extraction of rare earth elements (REEs), alumina (Al), and silica (Si) from coal fly ash (CFA). Up to 93.3% Si, 87.1% REEs (70.7% Ce, 82.5% La, 83.2% Gd, 87.1% Nd, 62.3% Dy, and 81.7% Y), and 92.9% Al were extracted from CFA, respectively. Moreover, 93.1% of the ZnO activator was efficiently recycled, and the yield of red mud was only 14.9%. X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) results showed that the speciation transformation of Al/Si during CFA/ZnO roasting was as follows: mullite, quartz, amorphous Al2O3, and SiO2 → Zn0.75Al1.5Si1.5O6, kyanite and willemite → gahnite and quartz/cristobalite solid solutions. The change in the REEs occurrence mode hinted at the migration of most REEs in aluminosilicates forms with Si during roasting, and disassociation with Si into the acid-soluble form after alkali leaching. These results indicate that the coupling of Al-Si-REE in CF was broken by this ZnO sinter method, promoting the sequential and efficient extraction of REEs, Al, and Si from CFA. This study provides a green and efficient strategy for element recovery from CFA, substantially reducing residues and favoring REEs concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call