This work proposes a mechanism for the physical processes underlying the wide practical application of the unique properties of a substance in a critical state—critical fluid (CF)—in contemporary technologies. According to the fluctuation theory of phase transitions (FTPT), this mechanism may be due to the fluctuation and structural characteristics of a critical fluid, which determine its equilibrium and kinetic properties. Among such characteristics are the system correlation radius Rs, the number of order parameter fluctuations Nf ~ Rs-3 per mole of critical fluid, and the fluctuation component of the thermodynamic potential F*f = NfkTc/(PcVc) = C0Rs-3. These structural characteristics are studied with the use of experimental gravity effect data, such as the altitude and temperature dependencies of the scattered light intensity I(z, t) in a heterogeneous substance (n-pentane) near the critical vaporization temperature. Using these results and the literature data on the formation of Al2O3 nanoparticles with the use of SC-H2O, the propagation velocity of substance molecules vf ≈ 106 cm/s is estimated for the origination and decay of order parameter fluctuations. It has been concluded that just such high propagation velocities of substance molecules most likely cause the unique properties of a critical fluid during their practical application in a number of engineering processes.
Read full abstract