In this study, 1-ferrocenyl-3-(2-hydroxyphenyl) allyl ketone (probe A) was synthesized using a solvent-free method in conjunction with solid-phase grinding and employed as a probe for the detection of tryptophan (Trp). The probe exhibits selective recognition of Trp as evidenced by UV–Vis and fluorescence spectra. In complex scenarios, the probe’s recognition of Trp remains unaffected by both the presence of interfering substances and the duration of exposure. A pH range of 8 to 12 is found to be optimal for the detection of Trp. Job’s curve analysis revealed that the binding ratio between the probe and Trp is 1:1. Based on the Benesi-Hildebrand equation, the binding constant for the interaction between probe A and Trp is calculated to be 1.5 × 107 M−1. The detection limit for Trp was determined to be 9.55 × 10−5 M. The sensing mechanism of the probe for Trp was elucidated through 1H NMR and FT-IR analyses.
Read full abstract