Abstract
AbstractChiral trisubstituted vicinal diols are a type of important organic compounds, serving as both common structure units in bioactive natural products and chiral auxiliaries in asymmetric synthesis. Herein, by using siloxypropadienes as the precursors of allyl copper(I) species, a copper(I)‐catalyzed diastereoselective and enantioselective reductive allylation of ketones was achieved, providing both syn‐diols and anti‐diols in good to excellent enantioselectivity. DFT calculations show that cis‐γ‐siloxy‐allyl copper species are generated favorably with either 1‐TBSO‐propadiene or 1‐TIPSO‐propadiene. Moreover, the steric difference of TBS group and TIPS group distinguishes the face selectivity of acetophenone, leading to syn‐selectivity for 1‐TBSO‐propadiene and anti‐selectivity for 1‐TIPSO‐propadiene. Easy transformations of the products were performed, demonstrating the synthetic utility of the present method. Moreover, one chiral diol prepared in the above transformations was used as a suitable organocatalyst for the catalytic asymmetric reductive self‐coupling of aldimines generated in situ with B2(neo)2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.