Abstract

In recent years, there has been a concerted drive to develop methods that are greener and more sustainable. Being an earth-abundant transition metal, cobalt offers an attractive substitute for commonly employed precious metal catalysts, though reactions engaging cobalt are still less developed. Herein, we report a method to achieve the decarboxylative allylation of nitrophenyl alkanes, nitroalkanes, and ketones employing cobalt. The reaction allows for the formation of various substituted allylated products in moderate-excellent yields with a broad scope. Additionally, the synthetic potential of the methodology is demonstrated by the transformation of products into versatile heterocyclic motifs. Mechanistic studies revealed an in situ activation of the Co(II)/dppBz precatalyst by the carboxylate salt to generate a Co(I)-species, which is presumed to be the active catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.