Suppose p(x, y, z) and q(x, y, z) are terms. If there is a common “ancestor” term s(z_{1},z_{2},z_{3},z_{4}) specializing to p and q through identifying some variables p(x,y,z)≈s(x,y,z,z)q(x,y,z)≈s(x,x,y,z),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} p(x,y,z)&\\approx s(x,y,z,z)\\\\ q(x,y,z)&\\approx s(x,x,y,z), \\end{aligned}$$\\end{document}then the equation p(x,x,z)≈q(x,z,z)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} p(x,x,z)\\approx q(x,z,z) \\end{aligned}$$\\end{document}is a trivial consequence. In this note we show that for lattice terms, and more generally for terms of lattice-ordered algebras, a converse is true, too. Given terms p, q, and an equation where {u_{1},ldots ,u_{m}}={v_{1},ldots ,v_{n}}, there is always an “ancestor term” s(z_{1},ldots ,z_{r}) such that p(x_{1},ldots ,x_{m}) and q(y_{1},ldots ,y_{n}) arise as substitution instances of s, whose unification results in the original equation (*). In category theoretic terms the above proposition, when restricted to lattices, has a much more concise formulation:Free-lattice functors weakly preserve pullbacksof epis. Finally, we show that weak preservation is all that we can hope for. We prove that for an arbitrary idempotent variety {{mathcal {V}}} the free-algebra functor F_{{mathcal {V}}} will not preserve pullbacks of epis unless {{mathcal {V}}} is trivial (satisfying xapprox y) or {{mathcal {V}}} contains the “variety of sets” (where all operations are implemented as projections).