Abstract

Synchronization is a phenomenon where interacting particles lock their motion and display non-trivial dynamics. Despite intense efforts studying synchronization in systems without clear classical limits, no comprehensive theory has been found. We develop such a general theory based on novel necessary and sufficient algebraic criteria for persistently oscillating eigenmodes (limit cycles) of time-independent quantum master equations. We show these eigenmodes must be quantum coherent and give an exact analytical solution for all such dynamics in terms of a dynamical symmetry algebra. Using our theory, we study both stable synchronization and metastable/transient synchronization. We use our theory to fully characterise spontaneous synchronization of autonomous systems. Moreover, we give compact algebraic criteria that may be used to prove absence of synchronization. We demonstrate synchronization in several systems relevant for various fermionic cold atom experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.