Abstract
Computing large Riemann–Roch spaces for plane projective curves still constitutes a major algorithmic and practical challenge. Seminal applications concern the construction of arbitrarily large algebraic geometry error correcting codes over alphabets with bounded cardinality. Nowadays such codes are increasingly involved in new areas of computer science such as cryptographic protocols and “interactive oracle proofs”. In this paper, we design a new probabilistic algorithm of Las Vegas type for computing Riemann–Roch spaces of smooth divisors, in characteristic zero, and with expected complexity exponent 2.373 (a feasible exponent for linear algebra) in terms of the input size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.