More than 1,000 manmade satellites currently orbit our planet.1 Some are near the edge of the Earth’s atmosphere just a few hundred kilometers up. Others are tens of thousands of kilometers above us.2 They aid in communication, navigation, defense, and science. A small number3,4 play a critical and quickly expanding role: monitoring the Earth’s surface and atmosphere to track environmental conditions that are intimately tied to human health. A number of new Earth-observing missions are planned for the next decade, including Sentinel-5 aboard the European Space Agency’s MetOp Second Generation satellites (pictured).48 In the meantime researchers are finding new uses for the satellite ... Researchers and government agencies worldwide already use satellite data to monitor air pollutants, infectious disease epidemics, harmful algal blooms (HABs), climate change, and more. But as current research indicates, that’s only the beginning of what we can do with the technology, broadly referred to as “remote sensing.” In the coming years, new satellites will offer higher-resolution imagery in conjunction with more robust and precise algorithms to process the data they deliver. As a result, researchers expect to dramatically expand their ability to view and understand Earth’s land, water, and air, from its remotest ocean waters to its largest cities. The National Aeronautics and Space Administration (NASA) launched its first satellite in 1958,5 and TIROS-1, the country’s first meteorological satellite, came 2 years later.6 Within a few decades members of the epidemiological and public health communities began actively looking at satellite data, says John Haynes, program manager of the NASA Applied Sciences Health and Air Quality Applications Program. In recent years interest in remote-sensing data has soared, with newer avenues being developed and fine-tuned, including air-quality measurements and vector-borne disease projections. “There’s really been a paradigm shift in the use of remote sensing for public health issues,” Haynes says. “Every year there seems to be more and more interest.” Indeed, by March 2015 NASA will have launched 6 Earth-observing missions in 12 months,7 more than in any year in at least a decade.8 New launches include a “global precipitation observatory” that will make frequent global measurements of rain and snowfall, plus one satellite designed to measure soil moisture and another that will measure how carbon moves through the Earth’s atmosphere, land, and oceans. In addition, the International Space Station will receive three new instruments, one that will observe how winds behave around the world, one that will measure clouds and aerosols (particles suspended in the atmosphere)—two variables that remain difficult to predict in climate-change models—and one that will take global, long-term measurements of key components of the Earth’s atmosphere, including aerosols and ozone.9 The momentum will carry through at least the next 8 or so years, with NASA and other space agencies in Europe and Asia planning to launch new satellites that will provide even higher-resolution snapshots of the Earth. Along with technological and scientific advances, a third development is leading to new and improved applications of satellite data: NASA and the National Oceanic and Atmospheric Administration (NOAA) have made their satellite data available free of charge, Haynes says, while the European Space Agency (ESA) has reduced prices and promised to provide free access to data from its next generation of instruments. “More people use the data, and you get more out of it than when you try to restrict it,” says Raphael Kudela, an oceanographer at the University of California, Santa Cruz, who uses satellite imagery to study HABs. This free sharing of data has been instrumental in his field, allowing researchers at institutions around the world to study HABs from above and to improve systems to track and predict them.
Read full abstract