Abstract

Increasing industrial developments increased the environmental pollution problems in many cities of the world. Air quality modelling and indexes are used to introduce the information on local air quality indicators in polluted regions. Estimation and monitoring of air quality in the city centres are important due to environmental health and comfort of human-related topics. Air quality approximation is a complicate subject that artificial intelligent techniques are successfully used for modelling the complicated and nonlinear approximation problems. In present study, artificial neural network and an adaptive neuro-fuzzy logic method developed to approximate the impact of certain environmental conditions on air quality and sulphur dioxide pollution level and used with this study in Konya city centre. Data of sulphur dioxide concentrations were collected from 15 selected points of Konya city for prediction of air quality. Using air quality standards, air quality was discussed by considering the sulphur dioxide concentration as independent variables with meteorological parameters. Different meteorological parameters were used for investigation of pollution relation. One of the important modelling tools, adaptive network-based fuzzy inference system model, was used to assess performance by a number of checking data collected from different sampling stations in Konya. The outcomes of adaptive network-based fuzzy inference system model was evaluated by fuzzy quality charts and compared to the results obtained from Turkey and Environmental Protection Agency air quality standards. From the present results, fuzzy rule-based adaptive network-based fuzzy inference system model is a valuable tool prediction and assessment of air quality and tends to propagate accurate results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.