Numerous studies on bacterial growth or survival predictive models have been conducted since the establishment of predictive microbiology. However, limited research focused on the prediction of bacteria-producing enterotoxins, which are often the causative agents of food-borne diseases. This study aimed to determine an appropriate kinetic model of staphylococcal enterotoxin A (SEA) production in milk after contamination with Staphylococcus aureus. An S. aureus strain producing SEA was inoculated into milk with an initial inoculum concentration of approximately 3.0 log CFU/mL. All samples were incubated for 30–48 h at 20 °C ± 1 °C, 28 °C ± 1 °C, and 36 °C ± 1 °C separately under shaking or static conditions. Duplicate samples were carried out at appropriate intervals to count the number of S. aureus colonies and detect the concentration of SEA. Experimental results showed that the SEA concentration curves under all experimental conditions were sigmoidal and consisted of three phases: lag, exponential, and stationary. Thus, the modified Gompertz model was used to describe the profile of SEA concentration in milk during the incubation. A good fitting accuracy (R2 > 0.97) indicated that the modified Gompertz model was appropriate. In addition to temperature, shaking during incubation also affected the maximal production rate of SEA and the maximal SEA concentrations, and shortened the lag phase at lower incubation temperatures, suggesting that the mechanical movements (e.g., stirring, pumping, and flowing) during the milk processing would increase the risk of SEA occurrence. Besides, the time to detection (TTD) of SEA was found to range from 3 to 24.5 h at temperatures of 36 °C ± 1 °C–20 °C ± 1 °C, at which time the concentrations of S. aureus ranging from 5.0 log CFU/mL–6.9 log CFU/mL at the TTD. This study contributed to understanding the kinetics of SEA production and the possible factors affecting the synthesis of SEA during the manufacturing of liquid foods, such as milk.
Read full abstract