The advent of additive manufacturing technology empowers precise control of multi-material components or specific defects in lightweight lattice metamaterials, however, fracture mechanics and toughening design strategies in such metamaterials remain enigmatic. By incorporating theoretical analysis, numerical simulation, and experimental investigation, our study reveals that stretch-bend synergistic strut deformations caused by bi-material components or topology defects contribute notably tougher lattice structures surpassing its ideal single-material lattices. A peak fracture energy at a critical modulus ratio was found in a designed bi-material lattice composed of triangular soft struts and hexagonal stiff struts, which originates from the shift of fracture modes at crack tip from strut bending to stretching dominated failure modes as the modulus of soft struts increases, where the compromise in competition between bending-enhanced and stretching-weakened energy dissipations of struts deformations results in the maximized fracture energy. A parametric design protocol was proposed to optimize fracture energy of bi-material lattices through tuning the modulus ratio and relative density. Furthermore, the concept of stretch-bend synergistic toughening can also be applied to make tougher single-material lattices with specific topological defects. Our findings not only provide physical insights into directing crack propagation but also provide quantitative guidance to optimize fracture resistance within low-density tough lattice metamaterials.
Read full abstract