Abstract

Diamond-like carbon (DLC) coatings are efficient in improving surface properties of functional components and parts. For conventionally manufactured materials and products, the DLC coatings are on a high level of development and industrially well established. However, with the advent of additive manufacturing technologies and the unique microstructure of the produced parts, so far the properties of the DLC coatings on these surfaces have not been extensively investigated. Additively manufactured materials possess process-related structural characteristics, such as residual porosity or an anisotropic material behavior, thereby leading to distinguished properties of the substrate/coating system compared to conventionally fabricated substrate materials. Therefore, 316L substrates are produced with an intended residual porosity and different building directions by binder jetting and subsequently coated with DLC in a magnetron sputtering process. Conventionally manufactured 316L substrates were also coated to evaluate the manufacturing effects on the DLC properties. Based on the analysis of DLC coated open pores, a model is developed to describe the growth mechanisms of thin PVD coatings on open pores of different size. The thin DLC coating entirely covers residual porosity when the pore size (opening diameter) is smaller than or equal to the coating thickness of ~3 µm. Independently of the residual porosity or building orientation, the DLC coating provides a high hardness of 24 GPa and reveals a high adhesion strength to all binder jetted 316 L substrates. Compared to conventional manufacturing routes, the combination of additive manufacturing and DLC deposition is a competitive approach to fabricate complex-shaped components and parts with enhanced surface properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call