Abstract

Implant history extends more than 4000 years in antiquity, with biocompatible alloy implants extending over only 70 years. Over the past several decades, total hip and knee replacements of Ti-6Al-4V and Co-Cr-Mo alloys have exhibited post implantation life spans extending over 15 years; limited by infection, loosening, stress-shielding-related bone resorption and other mechanical failures. With the advent of additive manufacturing technologies, such as electron beam melting (EBM) over the past decade, personalized, patient-specific; porous (open-cellular) implant components can be manufactured, and the integration of chemical, biological and mechanical methods is able to optimize strategies for improving long-term clinical outcomes. This review outlines these strategies, which include enhanced osseointegration and vascularization prospects, and provides some evidence for, and examples of, clinical trials representative of millions of implant surgeries world-wide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.