Industrial sources, such as steel and power activities continue to emit substantial amounts of CO, but have not received the same level of attention as mobile sources due to a lack of relevant regulations. This work reports that a commercial Pt/Al2O3 catalyst used in vehicle CO catalytic converters may face severe selenium (Se) poisoning deactivation from industrial sources. The turnover frequency (TOF) of the Pt/Al2O3 catalyst (250 °C) decreased from 2.18 s−1 to 0.12 s−1 with only 0.49 wt% (ICP) Se deposition. Se deposition causes the Pt 5d orbital shift to a higher energy state, raising the oxidation state of platinum. As a result, the back-donation from the 5d electrons of Pt to the 2π* antibonding orbital of the adsorbed CO molecule is inhibited, weakening the bonding between Pt/Al2O3 and the CO antibonding orbital, thereby significantly reducing CO activation ability. DRIFTS results, combined with apparent and microscopic kinetics, indicate that the surface of Se deposited Pt/Al2O3 catalyst remains O* available (500 K, θO* = 0.16), and the rate-controlling step changes from O2 + 2* → 2O* to CO + * → CO*. The work suggests that the application of CO catalytic oxidation technology for industrial source should fully consider the toxic effect of Se, but is often neglected.
Read full abstract