Abstract
Polyaniline (PANI) provides an attractive organic platform for CO2 electrochemical reduction due to the ability to adsorb CO2 molecules and in providing means to interact with metal nanostructures. In this work, a novel PANI supported copper catalyst has been developed by coupling the interfacial polymerization of PANI and Cu. The hybrid catalyst demonstrates excellent activity towards production of hydrocarbon products including CH4 and C2H4, compared with the use of bare Cu. A Faradaic efficiency of 71.8 % and a current density of 16.9 mA/cm2 were achieved at -0.86 V vs. RHE, in contrast to only 22.2 % and 1.0 mA/cm2 from the counterpart Cu catalysts. The remarkably enhanced catalytic performance of the hybrid PANI/Cu catalyst can be attributed to the synergistic interaction between the PANI underlayer and copper. The PANI favours the adsorption and binding of CO2 molecules via its nitrogen sites to form *CO intermediates, while the Cu/PANI interfaces confine the diffusion or desorption of the *CO intermediates favouring their further hydrogenation or carbon-carbon coupling to form hydrocarbon products. This work provides insights into the formation of hydrocarbon products on PANI-modified Cu catalysts, which may guide the development of conducting polymer-metal catalysts for CO2 electroreduction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.