Abstract

Summary Electrochemical CO2 reduction is a promising approach for upgrading excessive CO2 into value-added chemicals, while the exquisite control of the catalyst atomic structures to obtain high C2+ alcohol selectivity has remained challenging due to the intrinsically favored ethylene pathways at Cu surface. Herein, we demonstrate a rational strategy to achieve ∼70% faradaic efficiency toward C2+ alcohols. We utilized a CO-rich environment to construct Cu catalysts with stepped sites that enabled high surface coverages of ∗CO intermediates and the bridge-bound ∗CO adsorption, which allowed to trigger CO2 reduction pathways toward the formation alcohols. Using this defect-site-rich Cu catalyst, we achieved C2+ alcohols with partial current densities of > 100 mA·cm−2 in both a flow-cell electrolyzer and a membrane electrode assembly (MEA) electrolyzer. A stable alcohol faradaic efficiency of ∼60% was also obtained, with ∼500 mg C2+ alcohol production per cm2 catalyst during a continuous 30-h operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.