Abstract

Two-dimension nanosheets are ideal photocatalysts for CO2 reduction due to their high exposure of active sites and short charge transfer pathway. However, 2D photocatalysts have a tendency to agglomeration, thus compromising the performance of photocatalytic CO2 reduction. Trees, one of the most important plants for photosynthesis, have a unique “leaf-on-branch” structure. This unique two-dimension/one-dimension (2D/1D) configuration maximizes the adsorption of CO2 molecules and light harvesting. Herein, a tree-inspired semiconductor-on-ceramic 2D/1D heterostructure for efficient photocatalytic CO2 reduction is reported. The cobalt silicate (CoSi) nanosheets (∼0.68 nm) are in situ grown on the surfaces of hydroxyapatite (HAP) nanowires, creating a well-defined 2D/1D hierarchical structure. The vertical alignment of ultrathin CoSi nanosheets on the HAP nanowires effectively suppresses their agglomeration, leading to a large BET surface area (106.45 m2/g) and excellent CO2 adsorption (8.00 cm3 g−1). The results of photoelectrochemical characterization demonstrate that the 2D/1D hierarchical structure is powerful to expedite charge transfer. As a result, the gas generation rate of CO is as high as 28780 μmol g−1 h−1 over the CoSi-on-HAP 2D/1D heterostructure. In addition, the electron transfer mechanism and reaction pathways of CO2 reduction are revealed by in situ irradiated XPS and in situ DRIFT spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.