Probiotics are used to prevent antibiotic-associated diarrhea (AAD) via the restoration of the gut microbiota. However, the precise effects of Akkermansia muciniphila (Akk), which is a promising probiotics, on AAD are unknown. Here, AAD models were established via the administration of lincomycin and ampicillin with or without pasteurized Akk or Amuc_1100 treatment. A diffusion test revealed that Akk was susceptible to the majority of the antibiotics, such as ampicillin. These effects were confirmed by the reduced Akk abundance in AAD model mice. Pasteurized Akk or Amuc_1100 significantly decreased the diarrhea status score and colon injury of AAD model mice. Additionally, these treatments significantly decreased the relative abundance of Citrobacter at genus level and reshaped the metabolic function of gut microbiota. Notably, pasteurized Akk or Amuc_1100 significantly changed the serum metabolome of AAD model mice. In addition, pasteurized Akk or Amuc_1100 suppressed intestinal inflammation by upregulating the expression of GPR109A and SLC5A8 and downregulating the expression of TNFα, IFNγ, IL1β, and IL6. Furthermore, they enhanced water and electrolyte absorption by upregulating AQP4, SLC26A3, and NHE3. Pasteurized Akk or Amuc_1100 also restored intestinal barrier function by ameliorating the downregulation of ZO-1, OCLN, CLDN4, and Muc2 in AAD model mice. In summary, optimizing intestinal health with pasteurized Akk or Amuc_1100 may serve as an approach for preventing AAD.