Hydroxy interlayered vermiculite (HIV) and vermiculite are commonly referred to as 1.4 nm minerals. In the subtropical soils of central China, the concentration of vermiculites decreased while that of HIVs increased gradually from north to south as the intensity of soil formation or eluviation increases in the same direction. The cutans in these soils closely interact with air, roots, microbes, water and dissolved ions in soils. Cutans may therefore be expected to exert an important influence on the formation of 1.4 nm minerals relative to the matrix soils. However, little is known about the transformation of 1.4 nm minerals in Alfisols in central China. Here, we investigate the compositional differences of 1.4 nm minerals in cutans and matrix soils, and the probable transformation of vermiculite to HIV or vice versa when sodium citrate and sodium acetate are added to matrix Alfisols. Cutans and matrix soils were separated from three soils in the northern subtropical zone in China. The samples were analyzed for Fe, Mn, exchangeable cations, organic matter(O.M.), pH, and clay minerals. To 10 mL of matrix soil, suspensions containing about 250 mg (oven-dry weight) of clay was added with 5 mL of 0.4 mol/dm3 or 2 mol/dm3 of sodium citrate or sodium acetate solution and 5 mL of 0.2 mol/dm3 mixed solutions of CaCl2, Mg(NO3)2 and KCl. After its pH was adjusted to 6.0, the mixture was ‘incubated’ for 120 or 210 days (more than one season or half a year) during which period it was shaken for 1 hour every day. The clay mineral composition of the samples was determined after incubation. Both vermiculites and HIVs were present in matrix soils, but only vermiculties were detected in cutans. The addition of organic ligands (citrate and acetate) promoted the transformation of HIV to vermiculite. This transformation was obvious for the matrix soils that had been incubated with 0.5 mol/dm3 sodium citrate for 210 days while sodium acetate was less effective in this regard. The promoting effect of organic ligands is dependent on type and concentration as well as incubation time. This would suggest the reverse transformation occurred in the formation of cutans compared with a vermiculite-to-HIV transformation in the subtropical soils of central China from north to south. The position and environment of cutans in the B horizon together with the pH, organic matter and exchangeable base status in cutans seem conducive to the co-existence of vermiculite and HIV in the soils, but only vermiculite is found in cutans. The transformation of HIV to vermiculite in incubation experiments could be divided into two steps: 1) Cheluviation of organic matter to the interlayer hydroxy-aluminums from HIVs. 2) Rebasification of hydrated cations into the interlayers of vermiculites. The clay minerals in cutans can interact with organic ligands and nutrient elements excreted by roots. Under conditions of frequent wetting and drying and high pH, and when the concentrations of exchangeable bases, iron-manganese oxides, clays, and organic matter are high, the exchangeable cations can be incorporated into the interlayers of HIV, thereby promoting the partial transformation of HIV to vermiculite in rhizosphere soils. Cutan is at the interface of material and energy exchange involved in physical, chemical and biochemical reactions in the rhizosphere. These factors strongly affect the compositions of cutans. HIVs in (upper or adjacent) matrix soils may transform to vermiculites during cutan formation in these special soil environments.
Read full abstract