Abstract

Steady-state silica release rates ( r Si) from basaltic glass and crystalline basalt of similar chemical composition as well as dunitic peridotite have been determined in far-from-equilibrium dissolution experiments at 25 °C and pH 3.6 in (a) artificial seawater solutions under 4 bar pCO 2, (b) varying ionic strength solutions, including acidified natural seawater, (c) acidified natural seawater of varying fluoride concentrations, and (d) acidified natural seawater of varying dissolved organic carbon concentrations. Glassy and crystalline basalts exhibit similar r Si in solutions of varying ionic strength and cation concentrations. Rates of all solids are found to increase by 0.3–0.5 log units in the presence of a pCO 2 of 4 bar compared to CO 2 pressure of the atmosphere. At atmospheric CO 2 pressure, basaltic glass dissolution rates were most increased by the addition of fluoride to solution whereas crystalline basalt rates were most enhanced by the addition of organic ligands. In contrast, peridotite does not display any significant ligand-promoting effect, either in the presence of fluoride or organic acids. Most significantly, Si release rates from the basalts are found to be not more than 0.6 log units slower than corresponding rates of the peridotite at all conditions considered in this study. This difference becomes negligible in seawater suggesting that for the purposes of in-situ mineral sequestration, CO 2-charged seawater injected into basalt might be nearly as efficient as injection into peridotite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.