Numerical as well as experimental approaches are used to capture aero-acoustic characteristics of a car rear-view mirror. The numerical study splits up into several parts. Using an actual production mirror, particular emphasis must be put on the geometry preparation and mesh generation. Initially, a CFD simulation of the entire car aerodynamics is performed to extract the proper flow boundary conditions for the aero-acoustic simulation of a smaller section surrounding the mirror. Pressure fluctuations on the surfaces extracted during an LES generate the data base required for the aeroacoustic post-processing. The acoustic pressure at several monitoring points is then calculated using Lighthill's Acoustic Analogy. To include refraction effects of the nearby surfaces a direct BEM approach is also employed. Utilizing the PIV method, local areas of increased turbulence are identified experimentally. Microphone measurements with and without the exterior mirror are performed.
Read full abstract