The thermal decomposition of tree rings (separately, latewood and earlywood) of Larix gmelinii (Rupr.) Rupr.) during the period from 1988 to 1998 was studied using thermogravimetric analysis (TG / DTG) and differential scanning calorimetry (DSC). Thermal analysis was performed in oxidizing (air) condition. The stages of thermal decomposition of wood were analyzed by heating the sample from 30 to700 °C at the heating rates of 10, 20, 40 °C/min for TG / DTG and from 30 to590 °C at the heating rates of 10, 40 °C/min for DSC. The temperature ranges, mass loss, mass loss rate, temperature DTG / DSC peaks, thermal evaporation effects of moisture and the processes of thermal decomposition for each annual layer were studied. The result of thermogravimetry measurements were carried out using the Broido and Ozawa – Flynn – Wall methods. Tree rings of larch wood on the basis of the analysis of the activation energy values of the individual stages of thermal decomposition and activation energy dependency on the degree of conversion of wood material different tree rings; and based on the comparison of the mass loss for corresponding stages of thermal destruction, thermal effects, and other parameters of TG / DSC and DTG were characterized. The material presented in the study would, in our view, to study the impact of growing conditions on wood physical properties and chemical composition of wood, which are the basis for determining the direction of ways to use it, as well as indicators of the reaction of wood plants on endogenous and exogenous conditions.