Abstract
The photoluminescence properties of perovskite CsPbBr3 QDs embedded in glasses were investigated at cryogenic temperature in the range of 40-240 K. CsPbBr3 QDs with radii of 3.3 nm, 4.2 nm and 4.8 nm were precipitated in phosphate glasses using conventional thermal treatment. Photoluminescence (PL) integral intensities, bandgap energies and full with at half maximum of the PL bands of CsPbBr3 QDs showed a strong dependence on temperature. An exciton binding energy of ∼40 meV was derived from the temperature-dependent emission intensity. Optical phonon energy involved in the exciton-phonon interaction was found to be ∼56 meV, about three times as that of the single phonon energy. Exciton-phonon coupling strength and the lattice thermal expansion coefficient were strongly dependent on the size of CsPbBr3 QDs, and as a result, inflection temperature of the PL peak energies of CsPbBr3 QDs increased as the size increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.