Abstract
Phosphorus is a crucial element for living systems and plays significant roles in plant growth. The world’s supply of phosphorus today, however, relies on depleting feedstocks such as phosphate rocks, while the demand for phosphorus fertilizers escalates as the population continues to grow. It is thus urgent to develop sustainable sources and production methods for phosphorus. Here, we report on catalytic dephosphorylation for phosphorus recovery from organic and biological molecules. Ceria (CeO2) nanocrystals were synthesized with shape control and applied as artificial phosphatases to cleave the phosphate ester bond in para-nitrophenyl phosphate and release free phosphate anions in aqueous solutions. The dephosphorylation reaction was studied on the CeO2 nanocrystals at various temperatures to evaluate the dependences of rate constant, activation energy, and recyclability on the particle shape. The structure–property relationships established in these studies suggest that the oxygen vacancies on the sur...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.