We study the space of functions on a finite-dimensional vector space over a field of odd order as a module for a symplectic group. We construct a basis of this module with the following special properties. Each submodule generated by a single basis element under the symplectic group action is spanned as a vector space by a subset of the basis and has a unique maximal submodule. From these properties, the dimension and composition factors of the submodule generated by any subset of the basis can be determined. These results apply to incidence geometry of the symplectic polar space, yielding the symplectic analogue of Hamada's additive formula for the p-ranks of the incidence matrices between points and flats. A special case leads to a closed formula for the p-rank of the incidence matrix between the points and lines of the symplectic generalized quadrangle over a field of odd order. Together with earlier results on the 2-ranks, this result completes the determination of the p-ranks for these quadrangles.
Read full abstract