Abstract

We show that given a Frobenius algebra there is a unique notion of its second quantization, which is the sum over all symmetric group quotients of nth tensor powers, where the quotients are given by symmetric group twisted Frobenius algebras. To this end, we consider the setting of Frobenius algebras given by functors from geometric categories whose objects are endowed with geometric group actions and prove structural results, which in turn yield a constructive realization in the case of nth tensor powers and the natural permutation action. We also show that naturally graded symmetric group twisted Frobenius algebras have a unique algebra structure already determined by their underlying additive data together with a choice of super–grading. Furthermore we discuss several notions of discrete torsion and show that indeed a non–trivial discrete torsion leads to a non–trivial super structure on the second quantization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.