In order to overcome the structural drawbacks of layered electrodes in flexible supercapacitors, the construction of an electrode frame with high adaptability for the loading of different active materials makes the production of flexible supercapacitors simpler and more accurate. Herein, a novel loader type flexible supercapacitor with three-dimensional hybrid structure is built. In our design, the acetylene black and active material are enriched in the polyvinyl alcohol matrix, and the three-dimensional conductive network that can load different active material is formed. The active material can be selected on demand. The basic electrode (also a loader) formed by polyvinyl alcohol and acetylene black is an electronic conductor (∼1 Scm−1) with good electrochemical and mechanical performance. By loading active materials in this basic electrode, more powerful flexible electrodes can be built easily and accurately with the same steps according to the designed proportion. Electrodes constructed according to this method deliver nonnegligible surface capacity (e.g. 1.1 Fcm−2 in surface capacitance, polyaniline/carbon nanotube composite as active materials) with good response, rate performance, excellent durability (10000 times of charge-discharge), and good foldability (1000 times of folding). This pattern of carrier type electrodes provides a simple and universal strategy for manufacturing flexible supercapacitors.
Read full abstract