Abstract

Five types of micrometer-sized Sn and acetylene black (AB) composite powders were prepared by mechanical milling for 1, 3, 6, 12, and 24 h. The Sn/AB powders obtained, in addition to Sn-only powders were added to a binder and conductive material, and then dried under vacuum to prepare negative electrodes (anodes) for sodium-ion batteries (SIBs). SIBs were fabricated with the anodes in the form of 2032-type coin cells, and were evaluated using charge-discharge tests up to 50 cycles within the cutoff voltage range of 0.005–0.65 V at a constant current of 50 mA g−1 at 25 °C. Maximum discharge capacities of 614 to 651 mAh g−1 were obtained with all the anodes prepared with both the Sn-only and the Sn/AB composites. However, the discharge capacities of the Sn-only and Sn/AB composites milled for 1 and 3 h were significantly decreased as the charge-discharge cycle increased. In contrast, the Sn/AB composites milled for 6 h or more exhibited improved cycle characteristics; capacities of 635, 619, and 584 mAh g−1 were maintained during 50 cycles of testing with the Sn/AB_6h, Sn/AB_12h, and Sn/AB_24h samples, respectively, which were significantly higher than the anode prepared with the Sn-only powder (135 mAh g−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call