This study explores a novel application of a calorimetric sensor to measure the heat capacity of small heat-conducting parts under varying environmental conditions. The sensor, a hybrid of a heat conduction calorimeter and a differential scanning calorimeter (DSC), has been adapted from its original use on living skin to measure conductive materials. We present a detailed description of the sensor's instrumentation, its operating model, and the experimental procedure. The sensor's accuracy is evaluated through experimental measurements on aluminum and brass samples, showing a maximum deviation of 5 % and a mean deviation of 2.35 % from the theoretical values. Additionally, finite element method (FEM) simulations are employed to further investigate the sensor's performance, confirming that both measurement time and sample size significantly influence the results. This research demonstrates the potential of this calorimetric sensor for rapid and accurate thermal analysis of small heat conducting parts, with potential applications in various scientific and industrial fields.
Read full abstract