The establishment of latent cellular and anatomical viral reservoirs is a major obstacle to achieving a cure for people infected by HIV. Mesenteric lymph nodes (MLNs) are one of the most important anatomical reservoirs of HIV. Suboptimal levels of antiretroviral (ARVs) drugs in these difficult-to-penetrate viral reservoirs is one of the limitations of current antiretroviral therapy (ART) regimens. This study aimed to design and assess highly lipophilic ester prodrugs of dolutegravir (DTG) formulated with long-chain triglyceride (LCT) for delivery of DTG to the viral reservoir in mesenteric lymph and MLNs. A number of alkyl ester prodrugs of DTG were designed based on the predicted affinity to chylomicrons (CM), and the six most promising prodrugs were selected and synthesised. The synthesised prodrugs were further assessed for their intestinal lymphatic transport potential and biotransformation in biorelevant media in vitro and ex vivo. DTG and the most promising prodrug (prodrug 5) were then assessed in pharmacokinetic and biodistribution studies in rats. Although oral administration of 5 mg/kg of unmodified DTG (an allometrically scaled dose from humans) with or without lipids achieved concentrations above protein binding-adjusted IC90 (PA-IC90) (64 ng/mL) in most tissues, the drug was not selectively targeted to MLNs. The combination of lipophilic ester prodrug and LCT-based formulation approach improved the targeting selectivity of DTG to MLNs 4.8-fold compared to unmodified DTG. However, systemic exposure to DTG was limited, most likely due to poor intestinal absorption of the prodrug following oral administration. In vitro lipolysis showed a good correlation between micellar solubilisation of the prodrug and systemic exposure to DTG in rats in vivo. Thus, it is prudent to include in vitro lipolysis in the early assessment of orally administered drugs and prodrugs in lipidic formulations, even when intestinal lymphatic transport is involved in the absorption pathway. Further studies are needed to clarify the underlying mechanisms of low systemic bioavailability of DTG following oral administration of the prodrug and potential ways to overcome this limitation.
Read full abstract