Abstract
In recent years, aquatic ecosystems have been exposed to various stressors such as hypoxia and acidification, which has become an issue of significant concern. Many studies in fish have investigated the regulatory mechanisms of the response to hypoxia and acidification stress at the molecular level. However, molecular studies on hypoxia acidification dual stress conditions in rhubarb fish are less. For this study, the juvenile large yellow croaker was used as the study object. Four experimental groups were established, including the control group (normal group, N107; DO = 7.0 mg/L, pH = 8.1), hypoxia group (H107; DO = 3.5 mg/L, pH = 8.1), acidification group (A107; DO = 7.0 mg/L, pH = 7.3), and hypoxia–acidification group (dual stress group, D107; DO = 3.5 mg/L, pH = 7.3). Study of its response mechanism under hypoxia acidification conditions by transcriptome and proteome analysis. The present study revealed that the number of quantifiable proteins was 6303. Five pairwise comparisons between experimental groups demonstrated that a total of 265 DEGs/DEPs showed associations between the transcriptome and proteome at the level of quantitative and differential expression. Comparative proteomic and transcriptomic analyses were performed to identify differentially expressed genes/proteins in juvenile Larimichthys crocea under hypoxia and acidification stress. The GO term enrichment analysis showed that hypoxia had a greater effect on the organism. The KEGG pathway enrichment analysis showed that pathways associated with the extracellular matrix ECM–receptor interaction and protein digestion and absorption pathways were notably affected by hypoxia and acidification stress. Among these, the protein digestion and absorption pathway was significantly affected in all five pairwise comparisons between experimental groups. The ECM–receptor interaction pathway was significantly enriched under dual stress, indicating that dual stress had a greater detrimental effect on fish growth than single stressors. The study provides valuable insights into the potential combined effects of decreased pH and DO in Sciaenidae and elucidates the mechanism underlying the response of L. crocea to simultaneous hypoxia–acidification stress during early development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have