Abstract

Ipatasertib (GDC-0068) is a potent, highly selective, small-molecule inhibitor of protein kinase B (Akt) being developed by Genentech/Roche as a single agent and in combination with other therapies for the treatment of cancers. To fully understand the absorption, metabolism, and excretion of ipatasertib in humans, an open-label study using 14C-radiolabeled ipatasertib was completed to characterize the absolute bioavailability (period 1) and mass balance and metabolite profiling (period 2). In period 1, subjects were administered a 200 mg oral dose of ipatasertib followed by an 80 μg (800 nCi) intravenous dose of [14C]-ipatasertib. In period 2, subjects received a single oral dose containing approximately 200 mg (100 μCi) [14C]-ipatasertib. In an integrated analytical strategy, accelerator mass spectrometry was applied to measure the 14C microtracer intravenous pharmacokinetics in period 1 and fully profile plasma radioactivity in period 2. The systemic plasma clearance and steady-state volume of distribution were 98.8 L/h and 2530 L, respectively. The terminal half-lives after oral and intravenous administrations were similar (26.7 and 27.4 hours, respectively) and absolute bioavailability of ipatasertib was 34.0%. After a single oral dose of [14C]-ipatasertib, 88.3% of the administered radioactivity was recovered with approximately 69.0% and 19.3% in feces and urine, respectively. Radioactivity in feces and urine was predominantly metabolites with 24.4% and 8.26% of dose as unchanged parent, respectively; indicating that ipatasertib had been extensively absorbed and hepatic metabolism was the major route of clearance. The major metabolic pathway was N-dealkylation mediated by CYP3A, and minor pathways were oxidative by cytochromes P450 and aldehyde oxidase. SIGNIFICANCE STATEMENT: The study provided definitive information regarding the absolute bioavailability and the absorption, metabolism, and excretion pathways of ipatasertib, a potent, novel, and highly selective small-molecule inhibitor of protein kinase B (Akt). An ultrasensitive radioactive counting method, accelerator mass spectrometry was successfully applied for 14C-microtracer absolute bioavailability determination and plasma metabolite profiling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call