Task and motion planning problems in robotics combine symbolic planning over discrete task variables with motion optimization over continuous state and action variables. Recent works such as PDDLStream [1]garrett2020pddlstream have focused on optimistic planning with an incrementally growing set of objects until a feasible trajectory is found. However, this set is exhaustively expanded in a breadth-first manner, regardless of the logical and geometric structure of the problem at hand, which makes long-horizon reasoning with large numbers of objects prohibitively time-consuming. To address this issue, we propose a geometrically informed symbolic planner that expands the set of objects and facts in a best-first manner, prioritized by a Graph Neural Network that is learned from prior search computations. We evaluate our approach on a diverse set of problems and demonstrate an improved ability to plan in difficult scenarios. We also apply our algorithm on a 7DOF robotic arm in block-stacking manipulation tasks.
Read full abstract