In previous structure-activity relationship studies to identify new and selective 5-HT7 receptor (5-HT7 R) ligands, we identified the chiral compound, 5-chloro-2-{2-[3,4-dihydroisoquinoline-2(1H)-yl]ethyl}-2-methyl-2,3-dihydro-1H-inden-1-one (SYA 40247), with high-affinity binding to the 5-HT7 R. Thus, it was of interest to separate the enantiomers in order to evaluate their affinity at the 5-HT7 R. To achieve this separation, a normal-phase analytical method using HPLC-PDA and a 4.6 × 250 mm Chiralpak AD-H column was developed. Optimized isocratic conditions of 1.00 mL/min 95:5:0.1 v/v/v hexane-ethanol-diethylamine and a 254 nm analysis wavelength yielded a 6.07 min baseline separation. The method was scaled up to a 10 × 250 mm Chiralpak AD-H column, allowing 3 mg of racemate to be separated with a single injection, and 6 mg for an overlapping double injection in the same run. The separated enantiomers were reinjected into the analytical HPLC system, peak identities confirmed by retention time and PDA UV spectra, and the enantiomeric purities determined to be 100% for peak 1 and 100% for peak 2. A Jasco P-1020 polarimeter was used to determine the specific rotation [α] of the enantiomers of peaks 1 and 2, which were -86.2 and +93.3 (deg mL)/(g dm) respectively. No racemization was observed, and the enantiomeric purity remained at 100% for each peak.
Read full abstract