Abstract
The ever increasing advancements in semiconductor technology and continuous scaling of CMOS devices mandate the need for new dielectric materials with low-k values. The interconnect delay can be reduced not only by the resistance of the conductor but also by decreasing the capacitance of dielectric layer. Also cross-talk is a major issue faced by semiconductor industry due to high value of k of the inter-dielectric layer (IDL) in a multilevel wiring scheme in Si ultra large scale integrated circuit (ULSI) devices. Recently it has been found that Boron Nitride (BN) films can achieve low-k values around and hardness comparable to diamond [1][2]. BN is hygroscopic in nature. In this respect carbon can be added to the BN structure to produce Boron Carbon Nitride (BCN) films as the possible substitute for BN. The minimum dielectric constant achieved by plasma assisted chemical vapor deposition for a BCN thin film was reported to be 1.9. [2] The BCN films are also instrumental in suppressing the Cu migration [3]. The Young’s modulus of BCN films are reported well above 20 GPa making it one of the suitable options for low-k materials [4]. In the present work, BCN films were deposited by dual target sputtering of boron carbide (BC) target (DC), boron nitride (BN) target (RF) in nitrogen ambient with argon. The films were deposited under various N2/Ar gas flow ratios and temperature. XPS and FTIR measurements were performed to find the relative chemical compositions, chemical bonds and behavior of the deposited films with respect to change in N2/Ar gas flow ratios and deposition temperature. REFERENCES [1] Jun Liu, Kian Ping Loh, Ming Lin, Yong Lim Foo, Wei De Wang, and Dong Zhi Ch, Journal of Applied Physics, 96 (2004) 6679. [2] Riedel R., Advanced Materials, 4 (1992) 759. [3] M. K Mazumder, R. Moriyama, D. Watanabe, C. Kimura, H. Aoki, and T. Sugino: Jpn. J. Appl. Phys. 46 (2007) 2006. [4] C. Morant, D. Caceres, J. M. Sanz, and E. Elizalde: Diamond Relat. Mater. 16 (2007) 1441.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.