Abstract

This paper presents characterization of the effects of XeF2 vapor phase etching conditions on the lateral etch rate and etch uniformity of a sacrificial, epitaxial Nb2N layer grown between a III-N high-electron-mobility transistor heterostructure and a 6H-SiC substrate. To achieve uniform and repeatable lateral Nb2N removal, an etch temperature of 100 °C or higher was required, providing average etch rates ranging from 10 to 40 μm/min. A net compressive stress and positive strain gradient in the released III-N material were inferred from the buckling of clamped-clamped beams and the convex curvature of cantilever structures, respectively. XeF2 etching of epitaxial Nb2N sacrificial layers in III-N material structures allows for a highly selective, completely dry release process that is compatible with common micromachining and epitaxial lift-off techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.