Abstract
Wildfires are extremely harmful to the environment. While producing gaseous pollutants and particles that cause smoke, wildfires also release carbon dioxide (CO2), a greenhouse gas that will continue to warm the planet after the wildfire ends. This article delves into the impact of wildfires and air quality on human living conditions. The authors' machine learning models use wildfire data to forecast air quality with detailed indexes and geographic information during a wildfire. The work evaluates the performance of each machine learning model via statistical metrics like mean absolute error (MAE), R-squared (R2), and root mean squared error (RMSE). The experimental results used neural networks to predict a specific value for carbon monoxide (CO), ozone, and PM2.5. These are both promising and accurate, providing meaningful insight into air quality within a region. This work will be useful for cities, governments, citizens, and public safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Disaster Response and Emergency Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.