Abstract
In a Wilberforce pendulum, two mechanical oscillators are coupled: one pertains to the longitudinal (tension) motion and the other to the rotational (twisting) motion. It is shown that the longitudinal magnetic moment of circular currents, and similarly the magnetic moment of a spin-chain, can exhibit a Wilberforce-like vibration. The longitudinal oscillation is related to the Langevin diamagnetism, while the twisting motion is superimposed on the magnetic moment and spin precession. The calculations show that the coupling term is nonlinear in this (longitudinal) vibrating and (magnetic moment) precession system. By increasing the strength of the coupling we arrive at a spectrum, where further vibrational modes can be associated with the rotation of the precession. This means that the extent of the change in coherence can be demonstrated. Since the coupling strength can be different due to local effects, this can be an important factor from the point of view of signal propagation and in preserving signal shapes. The amount specifying the dissipation is introduced to express the degree of deviation. A relationship exists between the parameter characteristic of the coupling strength and how its quantity influences decoherence and dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.