Abstract
Time-resolved X-ray magnetic circular dichroism under the effects of ferromagnetic resonance (FMR), known as X-ray ferromagnetic resonance (XFMR) measurements, enables direct detection of precession dynamics of magnetic moment. Here we demonstrated XFMR measurements and Bayesian analyses as a quantitative probe for the precession of spin and orbital magnetic moments under the FMR effect. Magnetization precessions in two different Pt/Ni-Fe thin film samples were directly detected. Furthermore, the ratio of dynamical spin and orbital magnetic moments was evaluated quantitatively by Bayesian analyses for XFMR energy spectra around the Ni L2,3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L_{2,3}$$\\end{document} absorption edges. Our study paves the way for a microscopic investigation of the contribution of the orbital magnetic moment to magnetization dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.