Abstract

Let Ω be a nonempty closed convex subset of a real Hilbert space H\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathfrak{H}$\\end{document}. Let ℑ be a nonspreading mapping from Ω into itself. Define two sequences {ψn}n=1∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\{\\psi _{{n}}\\}_{n=1}^{\\infty}$\\end{document} and {ϕn}n=1∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\{\\phi _{{n}}\\}_{n=1}^{\\infty}$\\end{document} as follows: {ψn+1=πnψn+(1−πn)ℑψn,ϕn=1n∑nt=1ψt,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $$\\begin{aligned} \ extstyle\\begin{cases} \\psi _{n+1}=\\pi _{n}\\psi _{{n}}+(1-\\pi _{n})\\Im \\psi _{{n}}, \\\\ \\phi _{{n}}=\\dfrac{1}{n}\\underset{t=1}{\\overset{n}{\\sum}}\\psi _{t}, \\end{cases}\\displaystyle \\end{aligned}$$ \\end{document} for n∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$n\\in \\mathit{N}$\\end{document}, where 0≤πn≤1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$0\\leq \\pi _{n}\\leq 1$\\end{document}, and πn→0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\pi _{n} \\rightarrow 0$\\end{document}. In 2010, Kurokawa and Takahashi established weak and strong convergence theorems of the sequences developed from the above Baillion-type iteration method (Nonlinear Anal. 73:1562–1568, 2010). In this paper, we prove weak and strong convergence theorems for a new class of (η,β)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(\\eta ,\\beta )$\\end{document}-enriched strictly pseudononspreading ((η,β)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(\\eta ,\\beta )$\\end{document}-ESPN) maps, more general than that studied by Kurokawa and W. Takahashi in the setup of real Hilbert spaces. Further, by means of a robust auxiliary map incorporated in our theorems, the strong convergence of the sequence generated by Halpern-type iterative algorithm is proved thereby resolving in the affirmative the open problem raised by Kurokawa and Takahashi in their concluding remark for the case in which the map ℑ is averaged. Some nontrivial examples are given, and the results obtained extend, improve, and generalize several well-known results in the current literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.