Abstract

We know that variational inequality problem is very important in the nonlinear analysis. For a variational inequality problem defined over a nonempty fixed point set of a nonexpansive mapping in Hilbert space, the strong convergence theorem has been proposed by I. Yamada. The algorithm in this theorem is named the hybrid steepest descent method. Based on this method, we propose a new weak convergence theorem for zero points of inverse strongly monotone mapping and fixed points of nonexpansive mapping in Hilbert space. Using this result, we obtain some new weak convergence theorems which are useful in nonlinear analysis and optimization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.