Abstract
Weak and strong convergence theorems are proved in real Hilbert spaces for a new class of nonspreading-type mappings more general than the class studied recently in Kurokawa and Takahashi [Y. Kurokawa, W. Takahashi, Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010) 1562–1568]. We explored an auxiliary mapping in our theorems and proofs and this also yielded a strong convergence theorem of Halpern’s type for our class of mappings and hence resolved in the affirmative an open problem posed by Kurokawa and Takahashi in their final remark for the case where the mapping T is averaged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Analysis: Theory, Methods & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.