Abstract

Formulations of the boundary element method (BEM) currently include conventional viscoelastic constitutive equations in the frequency domain. The aim of the present paper is to implement viscoelastic behaviour in a time domain approach as well. The elastic Stokes fundamental solution is converted to a viscoelastic one by adopting a correspondence principle. A novel viscoelastic fundamental solution is obtained analytically by inverse Laplace transformation. A frequency domain BE approach is generalized by taking viscoelastic constitutive equations with fractional order time derivatives into account. It is shown that the boundary matrix ϵ ij for non smooth boundaries in a dynamic formulation equals the elastostatic matrix. The transfer behaviour of a mounting system has been calculated by adopting the developed BE formulation to a viscoelastic resilient support mount.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.